

The Advantages and
Disadvantages of

Automated UI Testing on
iOS Using Apple's

UIAutomation Framework

ii

Letter of Transmittal

Dear Constance,

This report explores the UIAutomation framework that Apple released with

its initial release of iOS 4 until my experience with it ended with iOS 5. It is directly

related to the work I did at <The Company> but it only mentions publicly available tools

to ensure company procedures remain confidential. Many bugs and inadequacies are

present with Apple’s iOS UIAutomation and I’ve listed a few of the major bugs that I ran

into in my course of working with the framework. This report is written as an overview

of the tool, to help figure out whether it is worth using for a given project. My

recommendations cannot be any more specific as usage of this tool is highly dependent

on an individual project. I hope that this report will meet the guidelines required for a

Co-op report.

Sincerely,

<Student Name>

iii

The Advantages and
Disadvantages of

Automated UI Testing on
iOS Using Apple's

UIAutomation Framework

iv

Summary

User interface or UI testing is crucial in creating an application in the iOS world. Testing

UI is normally a boring and repetitive job and being able to automate it would greatly relieve

much of the current overhead required to fully test an application. Apple attempted to create a

tool (the UIAutomation Framework) to allow developers to automate the UI testing of their

application. Whilst it performs this task adequately there is a significant investment in creating

scripts to allow one to automate this process. This investment combined with the various issues

the tool still has forces one to decide whether or not such an investment is worth it or whether

the traditional manual testing is better suited to the task.

v

Table of Contents

Letter of Transmittal……………………………………………………………………………………....ii

Title Page………………………………………………………………………………………………….iii

Summary………………………………………………………………………………………………….iv

Table of Contents…………………………………………………………………………………………v

Introduction………………………………………………………………………………………………..1

Advantages…………………………………………………………………………………………….….2

Fixed Issues……………………………………………………………………………………………….2

 Creating scripts…………………………………………………………………………………..2

 UIAElementTree Call…………………………………………………………………………….3

 Running from Command line…………………………………………………………………...3

 Sleep timers………………………………………………………………………………………3

 Complex gestures………………………………………………………………………………..3

Disadvantages…………………………………………………………………………………………….4

 High initial overhead/investment……………………………………………………………….4

 Scripts break after minor changes……………………………………………………………..4

 There is no way to verify it ‘really’ works………………………………………………………4

 Inadequate for custom interfaces………………………………………………………………5

 One cannot automate applications on previous versions of iOS……………………………5

 One cannot do anything outside the app……………………………………………………...5

 One cannot move back to start state…………………………………………………………..5

Conclusion…………………………………………………………………………………………………6

1

Introduction

Apple’s iOS is arguably the premier platform for smartphone applications. It brought the

concept of the ‘app’ and the ‘app store’ to the masses. With over 500,0001 applications in the

app store one must ensure that their product is perfect in order to attract and keep users. The UI

or user interface of the application is what every user will interact with and it is therefore crucial

to ensure that the UI is as flawless and as user friendly as possible.

Since a user will most likely be interacting with the UI of an application on a device, it is

necessary to test on a physical device as a simulation of the software running on a computer is

insufficient. Often there are bugs that occur only on a simulator and not on a device or vice

versa. In order to thoroughly test an application its UI functionality needs to be thoroughly tested

on every variation of hardware it is expected to run on. This can often get very repetitive and

costly as a tester must test the UI manually.

To solve this issue there have been many attempts to automate UI touches and gestures

on iOS devices. However, many of these projects are individually run with little to no support

and often break every time Apple releases an update to their device or firmware lineup.

Furthermore, they often require one to embed code into the application to allow the framework

to interact with it, creating code that is more complex and therefore increasing developer

overhead.

To solve this problem Apple released the UIAutomation framework with iOS 4. This is

part of Apple’s XCode IDE and is run as a separate diagnostic application which Apple refers to

as an ‘Instrument’. It allows the user to simulate touches and gestures in the iOS simulator as

well as a connected device. Gestures and touches are simulated by giving the UIAutomation

instrument a JavaScript script file with instructions on what to do.

1
 http://www.apple.com/ca/iphone/from-the-app-store/

http://www.apple.com/ca/iphone/from-the-app-store/
http://www.apple.com/ca/iphone/from-the-app-store/
http://www.apple.com/ca/iphone/from-the-app-store/
http://www.apple.com/ca/iphone/from-the-app-store/
http://www.apple.com/ca/iphone/from-the-app-store/
http://www.apple.com/ca/iphone/from-the-app-store/
http://www.apple.com/ca/iphone/from-the-app-store/
http://www.apple.com/ca/iphone/from-the-app-store/
http://www.apple.com/ca/iphone/from-the-app-store/
http://www.apple.com/ca/iphone/from-the-app-store/
http://www.apple.com/ca/iphone/from-the-app-store/
http://www.apple.com/ca/iphone/from-the-app-store/
http://www.apple.com/ca/iphone/from-the-app-store/
http://www.apple.com/ca/iphone/from-the-app-store/
http://www.apple.com/ca/iphone/from-the-app-store/
http://www.apple.com/ca/iphone/from-the-app-store/
http://www.apple.com/ca/iphone/from-the-app-store/
http://www.apple.com/ca/iphone/from-the-app-store/
http://www.apple.com/ca/iphone/from-the-app-store/
http://www.apple.com/ca/iphone/from-the-app-store/

2

Advantages

The advantages of such a tool are very apparent. Instead of hiring multiple testers to test

an application one can write a simple script to automate the task. When something unexpected

occurs the UIAutomation framework can output a plist file containing the steps it took as well as

screenshots, timestamps and error messages to help diagnose the problem. It is also very easy

to pick up as the JavaScript is very simple and the calls straightforward. UIAutomation has

evolved since its release and introduced fixes to a number of issues. Outlined below are some

issues that have been addressed between its original release and the iteration released with

iOS 5.

Fixed Issues

Creating scripts

Creating scripts with the original iOS 4 release was not as easy as it seemed. One

needed to find the element name and hierarchy in the tree using the UIAElementTree call or

accessibility tags. In order to use accessibility tags the developer must include them whilst

programming the application introducing developer overhead. However an added benefit to this

is that it is much easier for the application to be accessed by Apple’s Voiceover software which

allows visually challenged individuals to interact with iOS products.

Apple has since improved the creation of scripts greatly. One can tap on an item in the

simulator to get its hierarchy and therefore cut down on UIAElementTree calls which can take a

significant amount of time. Furthermore, Apple has introduced and Automator like feature which

allows one to perform an action in the iOS Simulator and have the code to repeat the action

automatically generated. Whilst this is generally decent, one still needs JavaScript knowledge to

modify the script and address irregularities.

3

UIAElementTree Call

The UIAElementTree call is very crucial in allowing one to create scripts. In order to

access any UI element in the application one needs the path to the object. To get the path one

must use the UIAElementTree Call. Initially, the call returned a long line of seemingly

unformatted text from which one had to discern the depth of the element and code the script

appropriately.

With the iOS 5 version of the UIAutomation instrument the UIAElementTree call is

greatly improved. It now returns an indented and formatted output which allows one to easily

see the depth and path of a single element. This greatly reduces the time and effort needed to

code a script. However, the UIAElementTree call is still fairly time consuming and depending on

the number of elements on the screen can produce very complex output.

Running from command line

With the original release of the UIAutomation instrument the only way to run scripts was

through the GUI interface. This requires one to be actively testing the product and whilst it

eases the burden on a tester it is far from fully automated testing. Furthermore, output needs to

be saved manually and this can be a time consuming and repetitively boring task. With the iOS

5 release one can now run the UIAutomation instrument from the terminal and specify the

output directory (although currently the output directory flag is ignored and output is stored in

the working directory) allowing scripts to be run autonomously.

Sleep timers

Sleep timers to wait for events such as fetching data were notoriously finicky with the

original release. This issue has since been remedied.

Complex gestures

Complex gesture support such as 3 finger taps and 5 finger pinches has now been

added. Previously only two finger scroll and tap was available.

4

Disadvantages

Whilst the UIAutomation instrument is a great tool and has been greatly improved since

its release there are still a number of issues with the framework.

High initial overhead/investment

In order to utilize the framework one must put in the time and effort to create the script

files. There is significant overhead in doing so and depending on the complexity of the

application and the desired number of test cases one can spend weeks coding scripts to test the

application. Often, manually testing can be faster depending on the project and whilst

counterintuitive can often be cheaper.

Scripts break after minor changes

As development progresses and the applications UI elements change scripts need to be

modified to ensure they still work. This isn’t just the case for major UI changes but rather

breakage occurs for very small changes such as moving a button a few pixels over. Having to

fix these scripts introduces even more overhead and can often lead to uncertainty on why the

script is failing. Is it due to the script or is something wrong with the application?

There is no way to verify it ‘really’ works

Simulating touches is not the same as actually touching a physical device. There can be

quirks that allow one to tap an object which the UIAutomation instrument cannot access and

vice versa. Furthermore, scripts break with minor changes leading one to doubt whether or not

there is really a problem with the application.

5

Inadequate for custom interfaces

The UIAutomation framework works very well with stock UIElements. However, the

majority of premier iOS applications utilize custom UI elements and the UIAutomation often has

issues handling these. There is a larger overhead in trying to script for custom UI elements and

scripts that address them are often very prone to breakage.

One cannot automate applications on previous versions of iOS

Often a client will demand that an application works with older deprecated versions of

iOS. The UIAutomation framework is not compatible with these and one must resort to manual

testing. Whilst this problem will disappear as more iterations of iOS are released it is still a

significant problem today and leads one to question whether it is worth automating tests when

they will need to be manually run anyway.

One cannot do anything outside the app

The UIAutomation framework does not allow one to do anything outside the application.

If settings need to be changed from the settings application this is not currently possible.

Furthermore, when attempting to test applications that utilize other applications the

UIAutomation instrument fails spectacularly.

One cannot move back to start state

When testing it is crucial that one knows how to reproduce a bug. The UIAutomation

instrument executes cases serially and remnants of previous cases remain, influencing the start

state for any given case. This results in bugs being missed and limits the number of things one

can test.

6

Conclusion

The UIAutomation framework is a step in the right direction. It brings the much needed

ability to automate UI testing on the iOS platform. Whilst it offers the potential for cost and time

saving the initial overhead is fairly high. For companies that build applications for other entities

a typical project can last between 6 to 8 months and within this timeframe it is often impractical

to utilize the UIAutomation framework. For projects lasting longer or applications created by the

company that the company actively maintains it is often worth it to invest in UI automation. The

UIAutomation framework is still fairly immature and does not allow for fine grain control. It lacks

basic requirements for a test tool by not allowing one to reset the start state and as such is only

good for augmenting current testing techniques. Overall, the decision to augment ones testing

using the UIAutomation framework needs to be decided on a case by case basis and is very

dependent on the time span and complexity of the given project.

