

TM Migration Process: Trial by Fire

Table of Contents
Preface ... iii
Introduction ... 4

Translation Team Overview .. 4
Machine Translation .. 4
Enhancing Machine Translation .. 4

TM Migration Process ... 6
The Beginning ... 6
Roadblocks in Creating a New Process .. 6

Exporting the Files ... 6
Patching the Scripts ... 7
Removing Duplicates ... 7
Deploying the TMs ... 8

Completion of the TM Migration Process .. 8
Conclusion .. 9
Appendix A – TM Migration Process Wikipedia .. 10

General Migration Steps .. 10
1. Export Legacy TM to TMX format. ... 10
2. Run the DITA Conversion Scripts on Legacy TM. ... 12
3. Import Legacy TM and PG DOC TM into Dev WorldServer. ... 14
4. Remove Duplicates Within Legacy TM and PG DOC TM. .. 14
5. Remove Duplicates Between Legacy TM and PG DOC TM. .. 15
6. Resolve Multiple-Translation Entries Within the Legacy TM. .. 15
7. Resolve Multiple-Translation Entries Between the Legacy TM and the PG DOC TM. 16
8. Create a Set of Valid Multiple-Translation Entries with Additional Tags: 18
9. Add Properties Tags to All Entries. .. 19
10. Add Legacy TM to PG DOC USER Migrated TM on Production WS. 20

Preface

I am especially proud that I was the owner and pioneer of the TM Migration Process. Before I
worked on this process, the translation memory (TM) files from acquired companies could not
be integrated into Business Objects’ system because of technical difficulties. I worked closely
with Language Specialists in some phases of the process, but for the vast majority of the time I
worked completely independently to find each of the technical problems before seriously
examining them to find an appropriate solution.

If I could sum up the migration process in one word, it would be “problematic.” Since all my
work essentially involved troubleshooting problems, which I also had to discover for myself, I
find it fitting to discuss each of the major problems which I discovered, dissected, and solved in
order to complete the migration successfully. If at any time there is doubt as to how I found the
problem initially, the answer is painstaking sanity checking; if at any time there is doubt as to
how I found the solution, the answer is painstaking trial.

Appendix A is the final TM Migration Process from the intranet Wikipedia; initially, the process
was merely the headings for each step.

Introduction

Translation Team Overview

 The translation process is a difficult but integral part of the software cycle; despite its
importance and embodiment of the global outreach of the company’s software solutions, the
translation team must not only struggle with the deadlines set by software developers and
testers, but also the team must overcome the technical intricacies required to translate millions
of words most efficiently and economically. Computers are very good at performing simple,
repetitive tasks such as retrieving translations from an electronic dictionary, but a well-known
limitation is computers’ inability to comprehend the contextual meaning of a sentence due to the
complex nature of linguistics.

 While fully automated machine-translated text may become feasible in the future, only
two options currently exist: use humans to fully translate the text or use machines (computers)
to partially translate the text and use humans to complete the translations. Due to the sheer
volume of translation work, the latter option is exercised at Business Objects.

Machine Translation

 A translation memory (TM) can be visualized as a container of word pairs, which include
a source string and a target string. Usually, the source string is English and the target string is
the desired language to which the source should be translated. There may be several different
implementations of a translation memory, each with various capabilities and metadata, but their
common denominator is the word pairing.

 Machine translation (MT) is achieved when translation software reads a passage of text,
accesses the translation memory to find the source strings which match the text, and substitutes
the source strings for the target strings. The aforementioned string metadata might include part
of speech, context, and origin which are used to generate a matching percentage for each string
or set of strings found in the passage of text. Given the complexity of the rules in translation
software, it is possible for new content to be translated purely by MT; previously translated
material, for example, the company’s different products that share the same disclaimer, should
be fully translated by MT, thus eliminating translation of the same content and reducing costs.

Enhancing Machine Translation

 Trados is established translation software that is used to perform MT; this software
allows a user to select a TM – there are many TMs which vary in content – for which the content
is suitable to the desired translation text. There are some downfalls, which include keeping
track of the many TMs (stored on Perforce), requiring the user to be proficient with the Trados
software, and requiring the user to perform translation on his local machine.

 Idiom WorldServer (WS) is a workflow solution that also provides a web interface to
manage TMs. WS is not standalone software like Trados, so WS does not allow a single user
to translate material on his own machine; rather, it is a server-based software package that

enables centralized, large-scale translations to be performed easily by many different users.
The scalable and centralized advantages of WS give compelling reasons to move from the
Trados-based translation methodology to the server-based one.

 One of the challenges with moving to a new system is ensuring that everything which
worked before the move works after the move. In the case of translations, the TMs are the most
valuable assets. The majority of the moving work lies in setting up the new system and
migrating the TMs from Trados to WS. As is the case with much software, each program uses
its own file format and compatibility between programs can be problematic.

TM Migration Process

The Beginning

 The migration process was initially a mere outline of general tasks which needed to be
completed. There was a minimal amount of documentation on the complete process, save for
the names of some steps that needed to be executed. A localization engineer at the
development center in Paris had written conversion scripts in Perl that converted TM export
(.tmx) files from Trados into WS-compatible .tmx files; these scripts were based on the
company’s own TMs and had already been executed to successfully migrate some of the
company’s own TMs to the new WS system. However, these scripts and the TM migration
process had not yet been executed on non-company TMs. The following passages detail the
creation of a process to successfully migrate non-company (legacy) TMs.

Roadblocks in Creating a New Process

Exporting the Files
 In the past year, Business Objects acquired companies whose TMs had not yet been
moved to WS. Their TMs were created by a newer version (version 7) of Trados and could
not even be opened using Business Objects’ older version (version 5) of Trados.
Furthermore, the conversion scripts were based on the older version of Trados, thus the TMs
had to be downgraded. Each of the external (legacy) TMs did have plain-text export files
which represented the TMs in a .txt file instead of the usual .tmx format. The only
workaround to the Trados version problem was to create a new, empty TM in version 5 for
each of the TMs in version 7, import the version 7 TM data into the version 5 TM, and export
the downgraded TM into a usable .tmx file.

 Importing the data proved to be tricky as the empty version 5 TM did not accept
Unicode-encoded files. This issue was discovered unfortunately only in the later steps of the
migration process when special characters, like accented ones, appeared corrupt. There
were two encoding problems with the files. First, each of the .txt files needed to be encoded
in a Windows-friendly, language-specific format. For example, Unicode supported both
Japanese and German characters, but the files for those two languages had to be encoded
to two different Windows code pages (the operating system’s encoding). Second, each of
the .txt files included a header section with font definitions, called the preamble, which
mapped Trados-specific tags to Unicode font styles. As these Unicode font styles were not
supported during the import step, strings which used those styles and contained special
characters displayed character corruptions.

 To solve the first encoding issue, research was needed to find the suitable code page for
each language. Then, each of the Unicode .txt files was converted to the appropriate code
page using a conversion utility bundled with the Java Development Kit (JDK). This solution
produced a completely lossless conversion which was essential in maintaining the quality of
translations. Solving the second issue required the aid of a Perl script that summarized the
Unicode font styles and tallied the number of occurrences of each style. Then, any Unicode
font styles which were used by the text were changed to non-Unicode styles. After fixing
both issues, the .txt files could be imported into the blank version 5 TM without further issues.

The fixes were verified via sanity checking, which involved opening a sample of the imported
strings and comparing them to their pre-import state to ensure the highest quality and string
integrity.

Patching the Scripts
 Since the Perl conversion scripts were based on internal Trados 5 TMs, the scripts
returned some errors while dealing with the legacy TMs which had been converted in the
previous step. To fix the errors, the scripts were painstakingly debugged using Perl’s
command line debugger. The results of the investigation were that specific tag combinations
in the legacy TMs were not recognized; by adding the necessary cases in the scripts, those
tags were recognized and the scripts could finish executing properly. Once again, the results
were verified by checking the scripts’ log files to ensure proper execution and by checking a
sample of the strings affected by the previously problematic tag combinations.

Removing Duplicates
 Another aim of TM migration, besides providing a centralized and scalable access point,
was to allow various TMs to be combined so that translation content would only have to be
leveraged against a single, conglomerated TM, named the PG Doc TM. In the previous
Trados-based method of translation, such TM recombination could not be as easily achieved
as in WS; furthermore, the WS interface provided file metadata in a tabular format that made
searching and organizing string entries very easy.

 Recombination of TMs also produced undesirable duplicate entries. One consideration
was that duplicate entries were redundant and took up memory. In turn, the performance of
the workflow would be negatively impacted. A critical task was to remove duplicate entries in
the legacy TMs before the legacy TMs could be added to the PG Doc TM.

 Trados-based TMs stored translation pairs in the proprietary Trados format; this file
format could only be opened by Trados and exported into an XML-formatted .tmx export file.
In contrast, WS stored its data in an Oracle database, which was accessed and queried
easily using SQL. An Oracle tool called SQL Developer was used to execute SQL queries
that removed duplicates between TMs before combining them. Two desirable outcomes
were achieved by reducing the number of duplicate entries before recombination of the TMs.
First and foremost, redundant entries would be removed, thus solving the duplicate entry
problem and ensuring that resources were used most efficiently. Secondly, the TMs
remained separate, non-overlapping entities which could be reused in different combinations.

 Further duplication problems remained that required the help of Language Specialists
(LS), or translators, to resolve. While duplicate entries were simple source-translation
pairings, multiple-translation entries were translations with the same sources but different
translations. Determining the correct source-translation pairings necessitated the work of a
translator. A Java servlet on the WS system was used to extract all of the multiple-
translations for LS review. After LS reviewed the entries, any incorrect translations were
removed from the legacy TMs via SQL Developer.

Deploying the TMs
 Finally, metadata was added to the legacy TM entries. Each entry was given extra
tagging that identified the entry’s legacy name and type of content. In future, this information
could be used to find specific entries from within the conglomerated PG Doc TM.

Completion of the TM Migration Process

 A project Wikipedia page had been maintained during the trials and tribulations of
migration work. Upon completing three successful legacy migrations, the wiki was refined one
last time to document each of the common steps in those three successful migrations. The set
of tools which had been created throughout the process was consolidated and clarified so that
the next software engineer or developer would be able to modify those tools as necessary.

Conclusion

 Through much trial and error, a vastly updated TM Migration process was born. This
process was successful because each of the roadblocks, which had previously prevented
legacy TMs from being converted for the WS system, had been resolved. Each of those
resolutions was verified by examining the translation entries to ensure no corruptions were
introduced. A well-defined process and set of tools that was established over the course of
three difficult migrations now remains; each complete iteration of the process will add more
polish and ensure that future migrations will be completed with much more efficiency and
confidence.

Appendix A – TM Migration Process Wikipedia

General Migration Steps

Legend
= may or may not be necessary
= checkpoint

1. Export Legacy TM to TMX format.

If you can export directly from a Trados 5.5 TM into .tmx format, simply do that and
proceed to Step 2.

However, if you must work with a Trados 7 TM, you will not be able to open the TM;
instead, you will need to work with its .txt export, which must be provided for you. In
order to convert from the Trados 7 .txt export to a Trados 5.5 .tmx export, you must
first convert the Trados 7 .txt file format so that it can be imported into a blank Trados
5.5 TM, from which you can export the .tmx file. The steps are outlined as follows:

a) Get the provided Trados 7 .txt export. Then, use Notepad to open the exported .txt
file, choose save-as, and verify that the default format selected is UTF-8. Close the file
without saving. If the file is not UTF-8, you must save the file in UTF-8.

b) Use the Java native2ascii.exe utility to convert the file format.

Convert the previous UTF-8 .txt file into an ASCII encoding which contains all of the
language's characters. For example, an ASCII encoding which fully supports French is
Cp1252. Reference page with encodings is
http://java.sun.com/j2se/1.4.2/docs/guide/intl/encoding.doc.html . Native2ascii.exe
can be found under C:\Program Files\java\<jdk version>\bin.

Conversion is a two-step process

 i) Convert the UTF-8 file to an intermediate ASCII format first:
 native2ascii -encoding UTF-8 my_utf8_export.txt
intermediate_file.txt
 ii) Convert the intermediate file to Cp1252:
 native2ascii -reverse -encoding Cp1252 intermediate_file.txt

http://java.sun.com/j2se/1.4.2/docs/guide/intl/encoding.doc.html�
http://java.sun.com/j2se/1.4.2/docs/guide/intl/encoding.doc.html�

my_Cp1252_file.txt

c) Get a new, empty TM from //depot/Localization/Projects/Mainline/TM/EmptyTMs/ for
the appropriate language and unzip the contents to a directory.

d) Trados 7 export file may use a Unicode FONT which causes character corruption
when trying to import the converted file (i.e. Cp1252 for French). This problem was
seen in Cartesis Finance files. Use the "detect_ArialUnicodeMS.pl" script to scan the file
for any Unicode fonts i.e. Arial Unicode MS. If any are found, the converted file is
crawled and the number of Unicode font tags is tallied. Should any tags exist, the font
definition at the beginning of the file must be modified so that the font is no longer
Unicode i.e. edit 'Arial Unicode MS' to read 'Arial'

e) Import my_Cp1252_file.txt or the desired file into the new TM.

Sanity Check

Open the imported .txt file and find a corresponding translation unit
in the TM. Code that appears within curly braces {<code>} should
appear as a gray TAG icon within Trados. Ensure that special
characters, like accents and apostrophes, appear normally and aren't
corrupted as "?" characters in Trados.

f) Export the TM into .tmx format.

Checkpoint

After step e), special characters (like those with accents) should
appear normally. If there are remnant ASCII representations of
Unicode characters, such as \ufff, most likely there was an error in
the conversion process. Check that your UTF-8 export from step a) is
in Unicode UTF-8 format. If it is in ASCII, then the conversion steps
corrupt the encoding.

2. Run the DITA Conversion Scripts on Legacy TM.

a) Search & Replace the .tmx files from 1f): in the case of Cartesis migration, the
creationid and changeid contain invalid characters, the ampersand (&) symbol i.e.
creationid="WH&P" so replace all instances of "WH&P" with "WHP" to proceed. In
'Search for' text box, enter: id="WH&P", type id="WHP" (incl. double quotes) in the
'Replace with' box and replace all of the strings.

b) Execute Perl migration scripts.

 Migration Scripts & Documentation (sync everything in the LocScripts folder)

• //depot/Documentation/Tools/LocScripts/TradosTMXsplitType.pl

• //depot/Documentation/Tools/LocScripts/DITA_TradosTMX2Idiom_update.pl
• //depot/Documentation/Tools/LocScripts/DITA_TradosTM_update.doc

 Verification Scripts & Documentation

• //depot/Localization/0_Idiom/dev/scripts/src/tm/CleanPhTmx.java
• //depot/Localization/0_Idiom/dev/scripts/src/tm/CleanTMX2.java
• \\vanpgsoftware\infobuilder\Team\Users\Trevar_EXIT_Tools\TM_Migration
• //depot/Localization/0_Idiom/Docs/TM_Migration_Steps.doc
• //depot/Localization/0_Idiom/dev/scripts/documentation/Instructions_cleanPhT

mx.doc

i) execute TradosTMXsplitType.pl with the parameters described in
DITA_TradosTM_update.doc

TradosTMXsplitType.pl reads the input .tmx files and creates another set of .tmx files
that are divided into several categories; each original .tmx file may be split into
multiple types, depending on the types of segments present.

See sample execution

C:\Windows\system32\cmd.exe

C:\>C:\depot\Documentation\Tools\LocScripts\TradosTMXsplitType.pl -silent -src
C:\src_tmx_folder -dest C:\splitType -remove_prop

ii) execute DITA_TradosTMX2Idiom_update.pl

Using the .tmx files split in the previous step, the script reads each translation segment
to remove unnecessary tags.

When working on Cartesis content, the script terminates because it does not recognize
some combination of tags. A fix is provided in this file, with which you overwrite the
original, existing file in the \LocScripts\TMX folder:
//experiments/trchu/Trados2Idiom4DITA_FRAME.pm

See script instructions

Run this script up to two times:

a) After executing the script for the first time, unknown variables within the .tmx files
may be inserted into the empty "unknown variable" text file which is passed as an
argument. If the "unknown variable" text file remains empty, you do not need to run
this script again; otherwise, proceed with the remaining steps

b) Separate each variable pair (e.g. BusinessObjects Enterprise=BusinessObjects
Enterprise) by a line break
note this special case (remove ut tags): </ut>> some variable etc.<ut>=> some
variable etc.

c) copy and paste all of the variable pairs to three sections within the variables.txt file:
[en-gb], [en-us], and [language you are working on] and save this variables.txt (to be
used again in the 2nd execution of this script)

d) clear the "unknown variable" text file (to be used again in the 2nd execution of this
script)

e) execute the script a 2nd time using the updated variables.txt file as an argument;
the "unknown variables" text file should be blank, and after the 2nd execution, should
remain blank

See sample execution

C:\Windows\system32\cmd.exe

C:\>C:\depot\Documentation\Tools\LocScripts\DITA_TradosTMX2Idiom_update.pl -
silent -src C:\splitType -dest C:\migrated2DITA4Idiom -guaranteedEntriesOnly -
unknown_variables C:\unknown_variables.txt -variables C:\variables.txt

iii) separate .tmx files

• place all migrated .tmx files with "_checkPH" in the filename into a separate
"checkPH" folder

• place all migrated .tmx files with "_unvalid" in the filename into a separate
"unvalid" folder

o "unvalid" files are to be discarded and are no longer needed

Sanity Check
_checkPH files have "& l t ;!!!& g t ;" in their segments
migrated files (non-checkPH and non-unvalid) should no longer have
<ut> tags within them. Acceptable metadata include:

 placeholder tags: <ph>
 text representation of characters: "&" is "& a m

p ;", "<" is "& l t ;", etc.
 search for "ut>", "\cf6", "\cs6", ";:cs", ";:cns",

";:fn"
 if any are found, delete the segment

containing the problem, or delete the whole .tmx file if
too many segments are affected

iv) execute verification scripts

• run CleanPhTmx on the "checkPH" folder
o remove the backup files with "_AC_NEW" appended to the filename
o _checkPH files should no longer have "& l t ;!!!& g t ;" in their segments

• run CleanTMX2 on the "migrated2DITA4Idiom" and "checkPH" folders
o if non-empty log files result, consult a language specialist

Checkpoint
All .tmx files to be migrated (checkPH and migrated2DITA4Idiom)
only have placeholders and text representations of special
characters.

3. Import Legacy TM and PG DOC TM into Dev WorldServer.

4. Remove Duplicates Within Legacy TM and PG DOC TM.

a) Install SQL Developer from: \\vanpgsoftware\software\Oracle\SQL_Developer

b) Find the Dev WS connection information for SQL Developer in this document on
Perforce: //depot/Localization/0_Idiom/Docs/WS8_SystemConfiguration.doc

c) Find the Table IDs of your TMs. In Dev WS, go to Tools > Translation Memories >
Your TM. In the Search Mode drop-down menu, choose Freeform SQL, type "x" and
click the green arrow. Red error text should appear above the search box. Choose
"View SQL..." and you will see the Table ID in the "from" clause, e.g.
zTM1721_TRANSLATIONS

d) Connect to Dev World Server via SQL Developer and, for each of your Legacy and PG
TMs, run this SQL query with the appropriate [ID] you found from step c):

DELETE

FROM zTM[ID]_TRANSLATIONS

WHERE rowid NOT IN

 (SELECT MIN(rowid)

 FROM zTM[ID]_TRANSLATIONS

 GROUP BY currentHash, targetHash

);

5. Remove Duplicates Between Legacy TM and PG DOC TM.

a) Delete entries from Legacy TM where the sources and targets between the two TMs
are identical.

DELETE

FROM zTM[LegacyID]_TRANSLATIONS

WHERE EXISTS

 (SELECT *

 FROM zTM[PGID]_TRANSLATIONS

 WHERE zTM[PGID]_TRANSLATIONS.currentHash =
zTM[LegacyID]_TRANSLATIONS.currentHash

 AND zTM[PGID]_TRANSLATIONS.targetHash =
zTM[LegacyID]_TRANSLATIONS.targetHash

);

6. Resolve Multiple-Translation Entries Within the Legacy TM.

a) Run this query:

SELECT currentHash AS Legacy_Src_Hash, sourcevc AS Legacy_Source, targetvc
AS Legacy_Target, targetHash AS Legacy_Target_Hash

FROM zTM[LegacyID]_TRANSLATIONS

WHERE currentHash IN

 (SELECT currentHash

 FROM zTM[LegacyID]_TRANSLATIONS

 GROUP BY currentHash

 HAVING count(currentHash) > 1

)

ORDER BY Legacy_Source;

b) Right-click in the Results of the query, choose Export Data -> XLS and save the .xls
file to disk.

c) Hide the two hash columns and send this .xls to the LS for review.

i) LS will review the rows of data and remove all valid entries. Any entries that the LS
leaves in the .xls spreadsheet are invalid TM entries and thus will be removed from the
TM!

d) If any entries need to be removed, LS will return the .xls file. Delete any rows in the
.xls that are not marked for removal. Create a temporary removal (zTM_REMOVE) table
in SQL Developer and import the hash columns from the .xls file into a two-column
table. Name the columns according to the same convention as the TM tables, i.e.
currentHash and targetHash. This table now contains two columns of all the hash
entries to be deleted from the Legacy TM. Remove TM entries from the Legacy TM by
deleting the intersection of the following two tables:

e) Run this query:

DELETE

FROM zTM[LegacyID]_TRANSLATIONS

WHERE EXISTS

 (SELECT *

 FROM zTM_REMOVE

 WHERE zTM_REMOVE.currentHash = zTM[LegacyID]_TRANSLATIONS.currentHash

 AND zTM_REMOVE.targetHash = zTM[LegacyID]_TRANSLATIONS.targetHash

);

7. Resolve Multiple-Translation Entries Between the Legacy TM and
the PG DOC TM.

a) Generate a list of entries where the source between the two TMs are identical,
ignoring placeholders, i.e. "Hello,{1} World" and "Hello, World" are interpreted to be

identical. On the WS home page, choose [TM Servlet] - TM Comparison. Select the
Legacy TM and PG TM in the drop-down menus, specify the HTML's output folder, and
check "Ignore Placeholders."

b) When the servlet completes, open the HTML file that was generated, ensuring that
the page's encoding is set to Unicode (UTF-8), then copy & paste its contents in an .xls
file, preserving the column and row structure. After pasting the contents into Excel,
select all the cells, go to Format > Cells.

i) In the Alignment tab, uncheck "Wrap text."
ii) In the Border tab, select "None" under the Presets section.

Finally, in Column E, add a header which reads "Remove From Legacy?" and send this
.xls sheet to the LS.

c) LS will review the .xls file and mark each entry to be either removed from the Legacy
TM or to be preserved.

d) If you have strings with a single quote character ('), as is often the case in French,
you will need to add another single quote character in front of each occurance in the
.xls sheet to act as an escape character. Then, each double occurance of single quotes
('') will show up as one when imported into the database. Note that double single-
quotes ('') are not the same as a double-quote (").

e) Remove invalid legacy multiple-translation entries from Legacy TM; copy the rows
marked for removal from step 7b to another removal .xls file. Create a two-column,
temporary removal (zTM_REMOVE) table in SQL Developer and import the Legacy
source and target columns from the removal .xls file. Remove Legacy TM entries similar
to the previous step. Note that due to the nature of the comparison servlet, the TM
entries are matched in the SQL by their strings instead of their hashes (as was the case
in the previous step).

Sanity Check

After importing the .xls file into a database table, check that the
number of rows you imported corresponds to the number of rows in
the .xls sheet. Furthermore, verify that the number of distinct rows
in the removal table correspond to the number of rows that you will
be removing in the next step.

f) Run this query:

DELETE

FROM zTM[LegacyID]_TRANSLATIONS

WHERE EXISTS

 (SELECT *

 FROM zTM_REMOVE

 WHERE zTM_REMOVE.LegacySource = zTM[LegacyID]_TRANSLATIONS.SOURCEVC

 AND zTM_REMOVE.LegacyTarget = zTM[LegacyID]_TRANSLATIONS.TARGETVC

);

Sanity Check

The number of rows in step f) should either correspond to the
number in step e), or the number that is returned by this query:

SELECT DISTINCT *

FROM zTM_REMOVE

8. Create a Set of Valid Multiple-Translation Entries with Additional
Tags:

In order to preserve Legacy translations that do not have placeholder tags, we add
placeholders so that the Legacy content will be matched.

See explanation

Before Placeholder Tagging

Legacy source Legacy target PG Doc source PG Doc target

AB{1} CD{1} AB{3} EF{3}

Translation of "AB" partially matches "CD{1}" and "EF{3}" but translation of "AB{3}"
results only in "EF{3}" in these TMs.

After Placeholder Tagging

Legacy source Legacy target PG Doc source PG Doc target

AB{1} CD{1} AB{3} EF{3}

AB{3} CD{3}

Translation of "AB{3}" now results in "EF{3}" and "CD{3}" in these TMs, thus
preserving the Legacy translation.

We achieve this by performing the following steps:

1. Take source from PG Doc TM.
2. Take target from Legacy TM.
3. Remove all placeholder tags from the Legacy target
4. Append all the placeholder tags from PG Doc source to the Legacy target
5. Add this set of translations to the Legacy TM.

a) Create an .xls of all the rows in step 7b that are to be preserved.

b) Execute Legacy_Target_Tagging.java -src [column index] -trg [column index] [.xls
file]

- the source column index (starting from 0) is the PG Doc source column
- the target column index (starting from 0) is the Legacy target column

c) Import the resulting Legacy-tagged .tmx file into the Legacy TM through the
WorldServer interface.

d) Through SQL Developer, remove duplicates within the Legacy TM.

DELETE

FROM zTM[LegacyID]_TRANSLATIONS

WHERE rowid NOT IN

 (SELECT MIN(rowid)

 FROM zTM[LegacyID]_TRANSLATIONS

 GROUP BY currentHash, targetHash

);

9. Add Properties Tags to All Entries.

a) Export the Legacy TM into a UTF-8 .tmx file.

b) Execute PL_PRN_Tagging.java [source folder] [output folder]

Sanity Check

Ensure that the new <prop..>..</prop> tags are inserted correctly
between the <tu> and <tuv> tags.

10. Add Legacy TM to PG DOC USER Migrated TM on Production WS.

a) Import the .tmx from step 9b into the PG DOC USER xx-XX TM on WorldServer.

	Preface
	Translation Team Overview
	Machine Translation
	Enhancing Machine Translation

	TM Migration Process
	The Beginning
	Roadblocks in Creating a New Process
	Exporting the Files
	Patching the Scripts
	Removing Duplicates
	Deploying the TMs

	Completion of the TM Migration Process

	Appendix A – TM Migration Process Wikipedia
	General Migration Steps
	1. Export Legacy TM to TMX format.
	2. Run the DITA Conversion Scripts on Legacy TM.
	3. Import Legacy TM and PG DOC TM into Dev WorldServer.
	4. Remove Duplicates Within Legacy TM and PG DOC TM.
	5. Remove Duplicates Between Legacy TM and PG DOC TM.
	6. Resolve Multiple-Translation Entries Within the Legacy TM.
	7. Resolve Multiple-Translation Entries Between the Legacy TM and the PG DOC TM.
	8. Create a Set of Valid Multiple-Translation Entries with Additional Tags:
	9. Add Properties Tags to All Entries.
	10. Add Legacy TM to PG DOC USER Migrated TM on Production WS.

